

- No neighboring (adjacent) hydrogens

- Two neighboring (adjacent) hydrogens

$\mathrm{H}=$ Hydrogens that we are interseted in
$\mathrm{H}=$ Hydrogens that we use for the $\mathrm{n}+1$ rule
Note: the number of lines in the peak does not refer to the number of hydrogens; a singlet does not mean 1 hydrogen; a double does not mean 2 hydrogens

- Pick a specific carbon with hydrogens
- Look at adjacent carbon(s) and count the number of hydrogens...then add 1
- The $\mathbf{n}+1$ value refers to the peak arising from the carbon with hydrogens you picked

$$
\mathrm{n}+1=2+1=3 \text { (triplet) }
$$

In this case, the triplet refers to signal (peak) from the three red hydrogens

We have 1° of unsaturation and oxygens: carbonyl

We have a quartet at ~ 4 ppm: these hydrogens must be next to 3 hydrogens

We have a singlet at ~ 2 ppm: these hydrogens are not next to any hydrogens

We have a triplet at ~ 1 ppm: these hydrogens must be next to 2 hydrogens

Where does the extra oxygen go? Let's look at our NMR charts:

$\mathrm{H}=3-4 \mathrm{ppm}$

Therefore, we must have:

Now, we have used 2 carbons, 5 hydrogens, and one oxygen. All we have left to figure out is the remaining 2 carbons, 3 hydrogens, and 1 oxygen. After our analysis, we know we have a carbonyl and a singlet peak at 2 ppm . Let's see how to put this together:

(from above)

